类加载机制

现在,我们已经了解了字节码文件的结构,以及JVM如何对内存进行管理,现在只剩下最后一个谜团等待解开了,也就是我们的类字节码文件到底是如何加载到内存中的,加载之后又会做什么事情。

类加载过程

首先,要加载一个类,一定是出于某种目的的,比如我们要运行我们的Java程序,那么就必须要加载主类才能运行主类中的主方法,又或是我们需要加载数据库驱动,那么可以通过反射来将对应的数据库驱动类进行加载。

所以,一般在这些情况下,如果类没有被加载,那么会被自动加载:

  • 使用new关键字创建对象时
  • 使用某个类的静态成员(包括方法和字段)的时候(当然,final类型的静态字段有可能在编译的时候被放到了当前类的常量池中,这种情况下是不会触发自动加载的)
  • 使用反射对类信息进行获取的时候(之前的数据库驱动就是这样的)
  • 加载一个类的子类时
  • 加载接口的实现类,且接口带有default的方法默认实现时

比如这种情况,那么需要用到另一个类中的成员字段,所以就必须将另一个类加载之后才能访问:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Main {
public static void main(String[] args) {
System.out.println(Test.str);
}

public static class Test{
static {
System.out.println("我被初始化了!");
}

public static String str = "我被调用了!";
}
}

这里我们就演示一个不太好理解的情况,我们现在将静态成员变量修改为final类型的:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Main {
public static void main(String[] args) {
System.out.println(Test.str);
}

public static class Test{
static {
System.out.println("我被初始化了!");
}

public final static String str = "我被调用了!";
}
}

可以看到,在主方法中,我们使用了Test类的静态成员变量,并且此静态成员变量是一个final类型的,也就是说不可能再发生改变。那么各位觉得,Test类会像上面一样被初始化吗?

按照正常逻辑来说,既然要用到其他类中的字段,那么肯定需要加载其他类,但是这里我们结果发现,并没有对Test类进行加载,那么这是为什么呢?

在编译阶段,整个Test.str直接被替换为了对应的字符串(因为final不可能发生改变的,编译就会进行优化,直接来个字符串比你去加载类在获取快得多不是吗,反正结果都一样),所以说编译之后,实际上跟Test类半毛钱关系都没有了。

所以说,当你在某些情况下疑惑为什么类加载了或是没有加载时,可以从字节码指令的角度去进行分析,一般情况下,只要遇到newgetstaticputstaticinvokestatic这些指令时,都会进行类加载

好了,聊完了类的加载触发条件,我们接着来看一下类的详细加载流程。

avatar

首先类的生命周期一共有7个阶段,而首当其冲的就是加载

加载阶段需要获取此类的二进制数据流,比如我们要从硬盘中读取一个class文件,那么就可以通过文件输入流来获取类文件的byte[](二进制字节流),也可以是其他各种途径获取,甚至网络传输并加载一个类也不是不可以。然后交给类加载器进行加载(类加载器可以是JDK内置的,也可以是开发者自己撸的)类的所有信息会被加载到方法区中,并且在堆内存中会生成一个代表当前类的Class类对象(那么思考一下,同一个Class文件加载的类,是唯一存在的吗?),我们可以通过此对象以及反射机制来访问这个类的各种信息。

每个 Java 类都有一个引用指向加载它的 ClassLoader(类加载器)。不过,数组类不是通过 ClassLoader 创建的(即不会导致类加载),而是 JVM 在需要的时候自动创建的,数组类通过getClassLoader()方法获取 ClassLoader 的时候和该数组的元素类型的 ClassLoader 是一致的。

一个非数组类的加载阶段(加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,这一步我们可以去完成还可以自定义类加载器去控制字节流的获取方式(重写一个类加载器的 loadClass() 方法)。

加载阶段与连接阶段的部分动作(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未结束,连接阶段可能就已经开始了。

接着我们来看验证阶段,验证阶段相当于是对加载的类进行一次规范校验,如果说类的任何地方不符合虚拟机规范,那么这个类是不会验证通过的,如果没有验证机制,那么一旦出现危害虚拟机的操作,整个程序会出现无法预料的后果。

验证阶段主要由四个检验阶段组成:

  1. 文件格式验证(Class 文件格式检查)
  2. 元数据验证(字节码语义检查)
  3. 字节码验证(程序语义检查)
  4. 符号引用验证(类的正确性检查)

avatar

文件格式验证这一阶段是基于该类的二进制字节流进行的,主要目的是保证输入的字节流能正确地解析并存储于方法区之内,格式上符合描述一个 Java 类型信息的要求。除了这一阶段之外,其余三个验证阶段都是基于方法区的存储结构上进行的,不会再直接读取、操作字节流了

接下来就是准备阶段了,这个阶段会为类变量分配内存,并为一些字段设定初始值,注意是系统规定的初始值,不是我们手动指定的初始值。

再往下就是解析阶段,此阶段是将常量池内的符号引用替换为直接引用的过程,也就是说,到这个时候,所有引用变量的指向都是已经切切实实地指向了内存中的对象了。

到这里,链接过程就结束了,也就是说这个时候类基本上已经完成大部分内容的初始化了。

最后就是真正的初始化阶段了。

初始化阶段是执行初始化方法 <clinit> ()方法的过程,是类加载的最后一步,这一步 JVM 才开始真正执行类中定义的 Java 程序代码(字节码)。

说明:<clinit> ()方法是编译之后自动生成的。


类加载器(ClassLoader)

开始介绍类加载器和双亲委派模型之前,简单回顾一下类加载过程。

类加载过程:加载->链接->初始化
链接过程又可分为三步:验证->准备->解析

avatar

加载是类加载过程的第一步,主要完成下面 3 件事情:

  1. 通过全类名获取定义此类的二进制字节流
  2. 将字节流所代表的静态存储结构转换为方法区的运行时数据结构
  3. 在内存中生成一个代表该类的 Class 对象,作为方法区这些数据的访问入口
  • 类加载器是一个负责加载类的对象,用于实现类加载过程中的加载这一步。
  • 每个 Java 类都有一个引用指向加载它的 ClassLoader。
  • 数组类不是通过 ClassLoader 创建的(数组类没有对应的二进制字节流),是由 JVM 直接生成的。

简单来说,类加载器的主要作用就是加载 Java 类的字节码( .class 文件)到 JVM 中(在内存中生成一个代表该类的 Class 对象)。 字节码可以是 Java 源程序(.java文件)经过 javac 编译得来,也可以是通过工具动态生成或者通过网络下载得来。

其实除了加载类之外,类加载器还可以加载 Java 应用所需的资源如文本、图像、配置文件、视频等等文件资源。

类加载器加载规则

JVM 启动的时候,并不会一次性加载所有的类,而是根据需要去动态加载。也就是说,大部分类在具体用到的时候才会去加载,这样对内存更加友好。对于已经加载的类会被放在 ClassLoader 中。

在类加载的时候,系统会首先判断当前类是否被加载过。已经被加载的类会直接返回,否则才会尝试加载。也就是说,对于一个类加载器来说,相同二进制名称的类只会被加载一次

类加载器总结

JVM 中内置了三个重要的 ClassLoader:

  1. BootstrapClassLoader(启动类加载器): 最顶层的加载类,由 C++实现,通常表示为 null,并且没有父级,主要用来加载 JDK 内部的核心类库( %JAVA_HOME%/lib目录下的 rt.jarresources.jarcharsets.jar等 jar 包和类)以及被 -Xbootclasspath参数指定的路径下的所有类。
  2. ExtensionClassLoader(扩展类加载器): 主要负责加载 %JRE_HOME%/lib/ext 目录下的 jar 包和类以及被 java.ext.dirs 系统变量所指定的路径下的所有类。
  3. AppClassLoader(应用程序类加载器): 面向我们用户的加载器,负责加载当前应用 classpath 下的所有 jar 包和类。

除了这三种类加载器之外,用户还可以加入自定义的类加载器来进行拓展,以满足自己的特殊需求。就比如说,我们可以对 Java 类的字节码( .class 文件)进行加密,加载时再利用自定义的类加载器对其解密。

avatar

除了启动类加载器是 JVM 自身的一部分之外,其他所有的类加载器都是在 JVM 外部实现的,并且全都继承自 ClassLoader抽象类。

这样做的好处是用户可以自定义类加载器,以便让应用程序自己决定如何去获取所需的类。每个 ClassLoader 可以通过getParent()获取其父 ClassLoader,如果获取到 ClassLoader 为null的话,那么该类就是是通过 启动类加载器 加载的

为什么获取到的ClassLoader 为null就是启动类加载器加载的呢? 这是因为启动类加载器由 C++ 实现,由于这个 C++ 实现的类加载器在 Java 中是没有与之对应的类的,所以拿到的结果是 null。

自定义类加载器

我们前面也说说了,除了启动类加载器,其他类加载器均由 Java 实现且全部继承自java.lang.ClassLoader。如果我们要自定义自己的类加载器,很明显需要继承 ClassLoader抽象类。

ClassLoader 类有两个关键的方法:

  • protected Class loadClass(String name, boolean resolve):加载指定二进制名称的类,实现了双亲委派机制 。name 为类的二进制名称,resolve 如果为 true,在加载时调用 resolveClass(Class<?> c) 方法解析该类。
  • protected Class findClass(String name):根据类的二进制名称来查找类,默认实现是空方法。

官方 API 文档中写到:

建议 ClassLoader的子类重写 findClass(String name)方法而不是loadClass(String name, boolean resolve) 方法。

如果我们不想打破双亲委派模型,就重写 ClassLoader 类中的 findClass() 方法即可,无法被父类加载器加载的类最终会通过这个方法被加载。但是,如果想打破双亲委派模型则需要重写 loadClass() 方法。

双亲委派模型

双亲委派模型介绍

类加载器有很多种,当我们想要加载一个类的时候,具体是哪个类加载器加载呢?这就需要提到双亲委派模型了。

ClassLoader 类使用委托模型来搜索类和资源。每个 ClassLoader 实例都有一个相关的父类加载器。需要查找类或资源时,ClassLoader 实例会在试图亲自查找类或资源之前,将搜索类或资源的任务委托给其父类加载器。双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应有自己的父类加载器。

下图展示的各种类加载器之间的层次关系被称为类加载器的“双亲委派模型(Parents Delegation Model)”。

avatar

注意 ⚠️:双亲委派模型并不是一种强制性的约束,只是 JDK 官方推荐的一种方式。如果我们因为某些特殊需求想要打破双亲委派模型,也是可以的.

其实这个双亲翻译的容易让别人误解,我们一般理解的双亲都是父母,这里的双亲更多地表达的是“父母这一辈”的人而已,并不是说真的有一个 MotherClassLoader 和一个FatherClassLoader 。

另外,类加载器之间的父子关系一般不是以继承的关系来实现的,而是通常使用组合关系来复用父加载器的代码。

1
2
3
4
5
6
7
8
9
public abstract class ClassLoader {
...
// 组合
private final ClassLoader parent;
protected ClassLoader(ClassLoader parent) {
this(checkCreateClassLoader(), parent);
}
...
}

在面向对象编程中,有一条非常经典的设计原则:组合优于继承,多用组合少用继承

双亲委派模型的执行流程

  1. 在类加载的时候,系统会首先判断当前类是否被加载过。已经被加载的类会直接返回,否则才会尝试加载(每个父类加载器都会走一遍这个流程)。
  2. 类加载器在进行类加载的时候,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成(调用父加载器 loadClass()方法来加载类)。这样的话,所有的请求最终都会传送到顶层的启动类加载器 BootstrapClassLoader 中。
  3. 只有当父加载器反馈自己无法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子加载器才会尝试自己去加载(调用自己的 findClass() 方法来加载类)。
  4. 如果子类加载器也无法加载这个类,那么它会抛出一个 ClassNotFoundException 异常。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
protected Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException
{
synchronized (getClassLoadingLock(name)) {
//首先,检查该类是否已经加载过
Class c = findLoadedClass(name);
if (c == null) {
//如果 c 为 null,则说明该类没有被加载过
long t0 = System.nanoTime();
try {
if (parent != null) {
//当父类的加载器不为空,则通过父类的loadClass来加载该类
c = parent.loadClass(name, false);
} else {
//当父类的加载器为空,则调用启动类加载器来加载该类
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {
//非空父类的类加载器无法找到相应的类,则抛出异常
}

if (c == null) {
//当父类加载器无法加载时,则调用findClass方法来加载该类
//用户可通过覆写该方法,来自定义类加载器
long t1 = System.nanoTime();
c = findClass(name);

//用于统计类加载器相关的信息
sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
sun.misc.PerfCounter.getFindClasses().increment();
}
}
if (resolve) {
//对类进行link操作
resolveClass(c);
}
return c;
}
}

🌈 拓展一下:
JVM 判定两个 Java 类是否相同的具体规则: JVM 不仅要看类的全名是否相同,还要看加载此类的类加载器是否一样。只有两者都相同的情况,才认为两个类是相同的。即使两个类来源于同一个 Class 文件,被同一个虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相同。

双亲委派模型保证了 Java 程序的稳定运行,可以避免类的重复加载(JVM 区分不同类的方式不仅仅根据类名,相同的类文件被不同的类加载器加载产生的是两个不同的类),也保证了 Java 的核心 API 不被篡改

如果没有使用双亲委派模型,而是每个类加载器加载自己的话就会出现一些问题,比如我们编写一个称为 java.lang.Object类的话,那么程序运行的时候,系统就会出现两个不同的 Object 类。双亲委派模型可以保证加载的是 JRE 里的那个 Object 类,而不是你写的 Object 类。这是因为 AppClassLoader 在加载你的 Object 类时,会委托给 ExtClassLoader 去加载,而 ExtClassLoader 又会委托给 BootstrapClassLoaderBootstrapClassLoader 发现自己已经加载过了 Object 类,会直接返回,不会去加载你写的 Object 类。

打破双亲委派模型方法

打破双亲委派模型方法就要自定义加载器,重写loadClass方法. 自定义加载器的话,需要继承 ClassLoader 。如果我们不想打破双亲委派模型,就重写 ClassLoader 类中的 findClass() 方法即可,无法被父类加载器加载的类最终会通过这个方法被加载。但是,如果想打破双亲委派模型则需要重写 loadClass() 方法。

为什么是重写 loadClass() 方法打破双亲委派模型呢?双亲委派模型的执行流程已经解释了:

类加载器在进行类加载的时候,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成(调用父加载器 loadClass()方法来加载类)。

重写 loadClass()方法之后,我们就可以改变传统双亲委派模型的执行流程。例如,子类加载器可以在委派给父类加载器之前,先自己尝试加载这个类,或者在父类加载器返回之后,再尝试从其他地方加载这个类。具体的规则由我们自己实现,根据项目需求定制化。